Интегральные стабилизаторы напряжения LM117/LM317, LM150/IP150, LM138/LM238/LM338. Долгое время у меня служил блок питания, построенный по классической схеме параметрического стабилизатора напряжения с защитой от короткого замыкания [1]. Только в целях получения большего выходного тока транзисторы VT2 и VT3 были заменены на КТ315 и КТ818 соответственно. Полярность выходного напряжения при этом другая, так что все конденсаторы, диоды и стабилитрон (я, кстати, применял КС518 – он выдает 18 вольт) должны быть включены обратной полярностью. Кроме того, вместо VT1 – МП38.
Этот блок питания (БП) являлся универсальным источником энергии для моих домашних экспериментов, выдавая от 0,5 до 18 вольт стабилизированного напряжения при токе 1 – 1,5А. Однако был у него и недостаток – из-за низкого КПД подобных схем выходной мощный транзистор греется как печка.
Долго я хотел сделать этот БП на интегральной базе (там и КПД повыше, да и есть такие функции как защита от перегрева, от короткого замыкания или даже от превышения допустимого тока), только не попадались мне на глаза подобные микросхемы. К142ЕН1, К142ЕН2 [2] – малая мощность, придется ставить дополнительный транзистор на усиление тока, да и слишком много выводов у неё. На КР142ЕН5 можно сделать регулируемый стабилизатор напряжения (СН), однако в этом случае минимальное напряжение будет 5В, что тоже нежелательно.
Таким образом, на отечественной элементной базе построить интегральный СН с желаемыми параметрами невозможно.
Однако зарубежная промышленность (точнее, фирма National Semiconductor) выпускает одну интересную микросхему LM317 (аналог – LM117 той же фирмы – различаются по ряду параметров , в частности, по диапазону рабочих температур, у LM117 он шире (от -55 до +150 °C)).
Так вот, эти микросхемы представляют собой регулируемые СН с выходным напряжением 1,2 – 37В при выходном токе 1,5А. Как уверяют производители, они снабжены защитой от короткого замыкания, выходной ток не зависит от температуры кристалла, гарантируется максимальная нестабильность выходного напряжения 0,3%, подавление пульсаций – на уровне 80 дБ.
К этому стоит добавить малые размеры (микросхема имеет всего три вывода, выпускается в различных корпусах: ТО-220, ТО-3, ТО-39, TO-263, SOT-223, TO-252 (рис. 1) и низкую стоимость.

Рисунок 1 – Внешний вид корпусов LM117/LM317
Схема регулируемого стабилизатора напряжения показана на рисунке 2.

Рисунок 2 – Схема регулируемого СН (1,25 – 25 В)
Также эти микросхемы применяют как зарядные устройства для аккумуляторных батарей. Типичная схема такого устройства приведена на рисунке 3. Здесь используется принцип зарядки постоянным током.

Рисунок 3 – Схема зарядного устройства
Как видно из рисунка, ток заряда определяется сопротивлением R1. Значения этого сопротивления лежат в пределах, указанных на рисунке. Это соответствует току заряда от 10 мА до 1,56 A.
Хочу отметить, что если требуется получить больший выходной ток СН, то лучше использовать специальные микросхемы:
– на ток до 3А рассчитана LM150 (IP150);
– на ток до 5А рассчитаны LM138 / LM238 / LM338 (отличаются диапазоном рабочих температур, самый широкий – у LM138 (от -55 до +150 °C).
Схемы включения у этих микросхем такие же, что и на рисунке 2, цоколевка – как на рисунке 1.
Далее приведены схемы зарядного устройства для автомобильного кислотно-свинцового аккумулятора (рис. 4) и стабилизатора напряжения с максимальным током 10А (рис. 5) как примеры дополнительного применения микросхем LM150 и LM138.

Рисунок 4 – Зарядное устройство для автомобильного аккумулятора на LM150(IP150)

Рисунок 5 – СН с выходным током до 10А
В заключение хочу заметить, что выходной конденсатор С2 по схеме на рис.2 может быть емкостью от 1 до 1000 мкФ – в зависимости от целей применения СН. Однако при емкости свыше 10 мкФ и/или выходном напряжении выше 25 В требуется в схему включать защитные диоды (рис. 6). Это нужно для того, чтобы предотвратить импульс тока, который может возникнуть при коротком замыкании в нагрузке из-за разряда выходного конденсатора. Этот импульс тока может достигать величины 20 А и повредить микросхему.

Рисунок 6
Литература:
1. Shema.Tomsk.Ru – Блок питания с защитой от КЗ;
2. Shema.Tomsk.Ru – Стабилизаторы напряжения на микросхемах серии К142;
3. National Semiconductor – LM117/LM317A/LM317 3-Terminal Adjustable Regulator;
4. LM138/238/LM338 – adjustable voltage regulators three-terminal 5-A;
5. LM150/250/LM350 – adjustable voltage regulators three-terminal 3 A;
6. LM150K 3.0A Adjustable Positive Voltage Regulator.